Skip to main content Skip to main navigation menu Skip to site footer

Perbandingan jumlah sel mononuklear, jumlah sel fibroblas, ukuran fibrosis, dan perlengketan klinis jaringan peridural pasca prosedur kraniektomi dekompresi dengan dan tanpa proceed surgical mesh pada kelinci new zealand cedera otak traumatik

Abstract

Latar Belakang: Salah satu penyebab utama komplikasi dan kematian yang timbul akibat cedera otak traumatika adalah hipertensi intrakranial. Terapi untuk mengendalikan peningkatan tekanan intrakranial (TIK) adalah dengan melakukan tindakan kraniektomi dekompresi sebelum tindakan definitif. Komplikasi yang sering ditemukan setelah kraniektomi dekompresi adalah adanya perlengketan/adhesi. Penggunaan proceed surgical mesh sebagai membran bioabsorbable diperkirakan mampu mencegah terjadinya fibrin bridge formation dan adhesi. Penelitian ini bertujuan untuk membuktikan efek tindakan kraniektomi dekompresi dengan proceed surgical mesh terhadap jumlah sel mononuklear, jumlah sel fibroblas, ukuran fibrosis dan perlengketan klinis pada jaringan peridural kelinci new zealand dengan cedera otak traumatik.

Metode: Penelitian ini menggunakan model binatang dengan rancangan the randomized post-test only control grup design. Sebanyak 20 sampel yang memenuhi kriteria dilibatkan dalam penelitian dan dilakukan randomisasi. Sebanyak 10 sampel dikelompokkan sebagai kelompok kontrol yaitu kelompok kelinci new zealand pascaoperasi kraniektomi dekompresi tanpa proceed surgical mesh dan kelompok perlakuan yaitu kelompok kelinci new zealand pascaoperasi kraniektomi dekompresi dengan proceed surgical mesh. Pada hari ke 28 dilakukan euthanasia dan pengambilan jaringan peridural untuk pemeriksaan jumlah sel mononuklear, jumlah sel fibroblas, dan ukuran fibrosis. Jumlah sel mononuklear, jumlah sel fibroblas dan ukuran fibrosis diperiksa dengan tehnik histopatologis. Perlengketan klinis dinilai dari adanya perlengketan antara duramater dengan jaringan otot temporalis, fascia atau kulit di atasnya. Uji hipotesis menggunakan uji independent t test dan Mann Whitney untuk data berskala numerik dan uji Chi Square untuk data berskala katagorik, dengan tingkat kemaknaan adalah p<0,05.

Hasil: Dari hasil penelitian didapatkan rerata jumlah sel mononuklear lebih rendah pada kelompok perlakuan (6,7±4,8 sel/LP) dibandingkan kelompok kontrol (7,0±3,0 sel/LP). Berdasarkan hasil analisis perbedaan ini tidak bermakna secara statistik (p=0,481). Rerata jumlah sel fibroblas lebih rendah pada kelompok perlakuan (15,5±4,1 sel/LP) dibandingkan  kelompok kontrol (17,8±5,3 sel/LP). Berdasarkan hasil analisis perbedaan ini tidak bermakna secara statistik (p= 0,292). Rerata ukuran fibrosis menunjukkan perbedaan yang bermakna dimana lebih rendah pada kelompok perlakuan (549,4±309,1μm) dibandingkan kelompok kontrol (830,9±342μm) dengan p=0,023.  Kelompok perlakuan dengan menggunakan proceed surgical mesh secara bermakna dapat mencegah 89% terjadinya perlengketan klinis (p<0,001).

Simpulan: Tindakan kraniektomi dekompresi dengan proceed surgical mesh secara bermakna menyebabkan ukuran fibrosis dan risiko perlengketan klinis lebih rendah pada jaringan peridural kelinci new zealand dengan cedera otak traumatika.

 

 

Introduction: One of the main causes of complications and deaths arising from traumatic brain injury is intracranial hypertension. Therapy to control the increase in intracranial pressure (TIK) is to perform a decompressive craniectomy before definitive treatment. A common problem after decompressive craniectomy is adhesion. The use of proceed surgical mesh as a bioabsorbable membrane is estimated to be able to prevent the occurrence of fibrin bridge formation and adhesion. This study aims to prove the effects of decompressive craniectomy with proceed surgical mesh on mononuclear cells counts, fibroblast cell counts, fibrosis size and clinical adhesions in the peridural of new zealand rabbits with traumatic brain injury. Method: This research uses animal model with randomized post-test only control group design. A total of 20 samples that met the eligibility criteria were included in the study and randomized. A total of 10 samples were grouped as a control group namely the new zealand rabbit group after decompressive craniectomy without proceed surgical mesh and 10 samples the treatment group namely the new zealand rabbit group after decompressive craniectomy with proceed surgical mesh. On day 28, we performed euthanasia and peridural tissue were taken for examination of mononuclear cells counts, fibroblast cell count, and fibrosis size. Mononuclear cells counts, fibroblast cells counts and the size of fibrosis was examined with histopathological techniques. Clinical adhesions is judged by the adhesions between the duramater and the temporalis muscle tissue, fascia or the overlying skin. Hypothesis test using unpaired t test and Mann-Whitney for numerical scale data and Chi Square test for categoric scale data, with significance level p <0,05.Result: From the results of the study it was found that the mean number of mononuclear cell counts was lower in the treatment group (6.7 ± 4.8 cells / LP) than the control group (7.0 ± 3.0 cells / LP).Based on the results of the analysis this difference was not statistically significant (p = 0.481). The mean number of fibroblast cells was lower in the treatment group (15.5 ± 4.1 cells / LP) than in the control group (17.8 ± 5.3 cells / LP).Based on the results of the analysis, this difference was not statistically significant (p = 0.292). The mean fibrosis size showed a significant difference which was lower in the treatment group (549.4 ± 309.1μm) than the control group (830.9 ± 342μm) with p = 0.023.The treatment group by using proceed surgical mesh can significantly prevent 89% of clinical adhesions (p <0.001).Conclusion: Decompressive craniectomy with proceed surgical mesh significantly causes lower fibrosis size and lower risk of clinical adhesions in the peridural new zealand rabbits with traumatic brain injury.

References

  1. Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ.2011. Cranioplast: Review of Material and techniques. J Neurosci Rural Pract 2011;2:162-7.
  2. Brown AW, Elovic EP, Kothari S, Flanagan SR, Kwasnica C. Congenital and acquired brain injury; Epidemiology, pathophysiology, prognostication, innovative treatments, and prevention. Archives of Physical Medicine and Rehabilitation. 2008;89:(3):S3–S8.
  3. Alvis-Miranda H, Castellar-Leones SM, Moscote-Salazar LR. Decompressive Craniectomy and Traumatic Brain Injury: A Review. Bull Emerg Trauma. 2013;1:60-68.
  4. Oladunjove AO, Schrot RJ, Lee MZ, Muizelaar JP, Shahlaie K. Decompressive craniectomy using gelatin film and future bone flap replacement. J Neurosurg. 2013;118: 776 – 782.
  5. Vakis A, Koutentakis D, Kalostos G. Use of polytetrafluoroethylene dural substitute as adhesion preventive material during craniectomies. Clinical Neurology and Neurosurgery. 2006;108:798–802.
  6. Cho KC, Park SC, Choe IS, Seo DH. Safety and Efficacy of Early Cranioplasty Decomressive Craniectomy in Trauma Brain Injury Patients. J Korean Neurotraumatol Soc. 2011;7:74-77.
  7. Maciver AH, McCall M, Shapiro AM. Intra-abdominal adhesions: Cellular mechanisms and strategies for prevention. International Journal of Surgery. 2011;9:589-594.
  8. Horaczek J, Zierski J, Graewe A. Collagen Matrix in Decompressive Hemicraniectomy. J Operatif, Neurosurg. 2008;63:176-181.
  9. Kamer E, Unalp H, Tarcan E, Diniz G, Atahan K, Ortac R, Onal MA. Effect of Hyaluronic Acid-carboxymethylcellulose Adhesion Barrier on Wound Healing: An Experimental Study. [Cited 2015 Feb. 10]. Available from: URL: http://www.woundsresearch.com/issue/807
  10. Kato T, Haro H, Komori H, Shimomiya K. Evaluation of hyaluronic acid sheet for the prevention of postlaminectomy adhesions. The Spine Journal. 2005;5:479-488.
  11. Niryana IW. 2017. Pengaruh Decompressive Craniectomy dengan Mesh terhadap Kadar Transforming Growth Factor Beta, Jumlah Sel Fibroblas, Ukuran Fibrosis, dan Perlengketan Klinis pada Jaringan Peridural Tikus Wistar Cedera Otak Traumatika. Disertasi.
  12. Kui Li, Yang Yong-qiang, Wang Li-Jun, Cao Yun-xing. Establishment of A Blunt Impact-Induced Brain Injury Model in Rabbits. Chinese Journal of Traumatology. 2012;15(2):100-104.
  13. Cernak N. Animal Models of Head Trauma. NeuroRx. 2005;2(3):410–422.
  14. Somin K, Yawon H, Muhammad K, Dosun J, and Gonhyung K. Evaluation of Bone Regeneration on Polyhydroxyethyl-polymethyl Methacrylate Membrane in a Rabbit Calvarial Defect Model. College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea. Korea in vivo. 2016;30:587-592.
  15. Rui S, Jiajia X, Hanbin W, Renxian W, Min G, Dafu C, Liqun Z, and Wei T. 2012. Fabrication and evaluation of homogeneous electrospun PCL/gelatin hybrid membrane as antiadhesion barrier for craniectomy. Journal of Materials Chemistry. 2016;2:1-13.
  16. Chen JM, Lee SH, Tsai TT, Niu CC, Chen LH, Chen WJ. Anti‑adhesive Effect of Hyaluronate in a Rabbit Laminectomy Model. Biomed J. 2014;37:218-224.
  17. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front biosci. 2004;9:283-9.
  18. Velnar T, Bailey T, Smrkolj V. The Wound Healing Process : an Overview of the Cellular and Molecular Mechanism. Jimr. 2009;37:1528 – 1542.
  19. Young A, Mcnaught C.The Physiology of Wound Healing. Basic Science in surgery (oxford). 10: 475-479; 2011.
  20. Luo L, Chifei Zhang C, Zhao J, Wei Q, Li X. Effects of Rapamycin on Reduction of Peridural Fibrosis: An Experimental Study. Med Sci Monit. 2015;21:482-488.
  21. Kelten B, Erdogan H, Antar V, Sanel S, Tuncdemir M, Kutnu M, Karaoglan A, Orki T. Pentoxifylline inhibits epidural fibrosis in post-laminextomy rats. Med Sci Monit. 2016;22:840-7.
  22. Zhang Z, Manda S, Raymond CK, Courtney R. A New Rabbit Model of Pediatric Traumatic Brain Injury. Journal of Neurotrauma. 2015;32:1369–1379.
  23. Jun JI, Lau LF. The matricellular protein CCN1/CYR61 induces fibroblast senescence and restrict fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12(7):676-5.
  24. Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143-79.
  25. Wahed S, Ahmad M, Mohiuddin K, Katory M, Jones M. Short-term result for laparoscopic ventral rectopexy using biological mesh for pelvic organ prolapse. Colorectal Dis. 2012;14(10):1242-7.
  26. Sheng HS, You CG, Yang L, Zhang N, Lin J, Lin FC, Wang MD. Trephination mini craniectomy for traumatic posterior fossa epidural hematomas in selected pediatric patients. Chin J Traumatol. 2017;20(4):212-15.
  27. Machairas A, Misiakos EP, Liakakos T, Karatzas G. Incisional hernioplasty with extraperitoneal onlay polyester mesh. Am Surg. 2004;70(8):726-9.

How to Cite

Mahendra, K. Y. F., Niryana, I. W., & Golden, N. (2019). Perbandingan jumlah sel mononuklear, jumlah sel fibroblas, ukuran fibrosis, dan perlengketan klinis jaringan peridural pasca prosedur kraniektomi dekompresi dengan dan tanpa proceed surgical mesh pada kelinci new zealand cedera otak traumatik. Medicina, 50(2). https://doi.org/10.15562/medicina.v50i2.805

HTML
71

Total
36

Share

Search Panel